MicroRNA-29b alleviates oxygen and glucose deprivation/reperfusion-induced injury via inhibition of the p53-dependent apoptosis pathway in N2a neuroblastoma cells
نویسندگان
چکیده
Cerebral ischemic injury causes severe brain damage and remains one of the leading causes of morbidity and mortality worldwide. Members of the microRNA-29 (miR-29) family are involved in regulating the process of ischemia and may be developed as biomarkers to diagnose and treat cerebral ischemia. The role of miR-29b in cerebral ischemia injury remains poorly understood. The purpose of the present study was to investigate whether miR-29b overexpression suppressed cerebral ischemic injury and to explore its underlying mechanism of action. The results demonstrated that levels of miR-29b in N2a neuroblastoma cells decreased following oxygen and glucose deprivation/reperfusion (OGD/R) treatment. Transfection with miR-29b mimics significantly increased cell viability, decreased lactate dehydrogenase (LDH) leakage, inhibited apoptosis by decreasing morphological changes occurring in the nuclei and reduced caspase-3 activity in OGD/R-treated N2a cells. Conversely, miR-29b inhibitors enhanced OGD/R-induced cytotoxicity and apoptosis. In addition, the miR-29b mimics blocked the increase in Bax and p53 expression and decreased Bcl-2 expression in OGD/R-treated N2a cells, whereas miR-29b inhibitors exacerbated the changes in the expression of these apoptosis-associated proteins caused by OGD/R. p53 knockdown using p53 small interfering RNA decreased cell viability and increased LDH leakage, reversing the improvements that the miR-29b mimics induced in damaged cells. Taken together, the results of the present study demonstrated that miR-29b attenuates ischemic injury by negatively regulating the p53-dependent apoptosis pathway and may therefore be a novel potential therapeutic target for treating ischemic stroke.
منابع مشابه
Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells
Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...
متن کاملHsp20 Protects against Oxygen-Glucose Deprivation/Reperfusion-Induced Golgi Fragmentation and Apoptosis through Fas/FasL Pathway
Cerebral ischemia-reperfusion injury plays an important role in the development of tissue injury after acute ischemic stroke. Finding effective neuroprotective agents has become a priority in the treatment of ischemic stroke. The Golgi apparatus (GA) is a pivotal organelle and its protection is an attractive target in the treatment of cerebral ischemia-reperfusion injury. Protective effects of ...
متن کاملKalirin-7 plays the neuroprotective role in Neuro-2A cells injured by oxygen-glucose deprivation and reperfusion through Rac1 activation
Objective(s): The study explored the neuroprotective role of Kalirin-7 (Kal-7) in Neuro-2A cells after oxygen-glucose deprivation and reperfusion (OGD/R) treatment.Materials and Methods: The study used an OGD/R model of mouse Neuro-2A neuroblastoma cells in vitro. Cells were transfected with pCAGGS-Kal-7 to up-regulating kal-7. Then cell proliferation and apoptosis were respectively analyzed by...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کامل